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Abstract We consider a network design problem that arises in the cost-optimal de-
sign of last mile telecommunication networks. It extends the Connected Facility Lo-
cation problem by introducing capacities on the facilities and links of the networks.
It combines aspects of the capacitated network design problem and the single-source
capacitated facility location problem. We refer to it as the Capacitated Connected
Facility Location Problem. We develop a basic integer programming model based
on single-commodity flows. Based on valid inequalities for the capacitated network
design problem and the single-source capacitated facility location problem we de-
rive several (new) classes of valid inequalities for the Capacitated Connected Facility
Location Problem including cut set inequalities, cover inequalities and combinations
thereof. We use them in a branch-and-cut framework and show their applicability and
efficacy on a set of real-world instances.
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1 Introduction

Given a set of customers, a set of potential facility locations and some inter-
connection nodes, the goal of the Connected Facility Location problem (ConFL) is
to find the minimum-cost way of assigning each customer to exactly one open fa-
cility, and connecting the open facilities via a Steiner tree. The sum of costs for the
Steiner tree, the facility opening costs and the assignment costs needs to be mini-
mized. This problem models a network design problem that arises in the design of
last mile telecommunication networks when the fiber to the curb (FTTC) deployment
strategy is applied (see, e.g., [19]). Contrary to the fiber to the home strategy, where
each customer, i.e., household, has its own fiber-optic uplink, in the FTTC strategy
some of the existing copper wire infrastructure is used. More precisely, in an FTTC
network, fiber optic cables run from a central office to a cabinet serving a neighbor-
hood. End users connect to this cabinet using the existing copper connections. Expen-
sive switching devices are installed in these cabinets. The usage of the last d meters
of copper wire between the customer and a switching device may significantly reduce
deployment costs while still enabling broadband connections of reasonable quality.

In more detailed planning of FTTC networks, capacities of the links and of mul-
tiplexer devices are limited and this aspect was not captured by the ConFL variants
studied in the literature so far. In this paper we consider a new capacitated variant
of the ConFL problem, that we will refer to as the Capacitated Connected Facility
Location Problem (CapConFL).

In a typical application from telecommunications (see, e.g., Wassermann [35] for
more details regarding input parameters), demands of customers are given as the
number of twisted copper lines that are to be “served” at the respective customer lo-
cation. Switching (or multiplexer) devices have both capacity and demand. Capacity
is defined in terms of the number of twisted copper lines a device can serve. The de-
mand of a switching device is defined as the number of fiber-optic uplinks required
to connect the device to the central office (which is further connected to the back-
bone network). The number of uplinks is fixed for each device and independent of
the number of customers that are finally assigned to it. The CapConFL consists of
deciding on the location of switching devices, the assignment of customers to these
devices and the routing of the uplinks from the switching devices to the central office,
while minimizing the overall investment costs.

1.1 Problem definition

More formally, CapConFL can be defined as follows. The input is a graph G =
(V ,ES ∪ AR) with the set of nodes V partitioned into the set of customers (R),
the set of potential facility locations (F ) and the set of potential Steiner nodes
(V \ (F ∪ R)). A root node r ∈ V \ (F ∪ R) represents the connection to a higher
order (e.g., backbone) network. The network GS = (VS,ES), where VS := V \R and
ES := {e = {i, j} ∈ E | i, j ∈ VS} is called the core network. The assignment net-
work GR = (F ∪ R,AR) consists of directed arcs between potential facilities and
customers, i.e., AR = {(i, k) | i ∈ F,k ∈ R}. The following input parameters are as-
sociated to the network:
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Fig. 1 Feasible solutions of the ConFL and CapConFL problem, respectively

– Facility opening cost fi ≥ 0, capacity vi > 0 and demand di > 0 for each i ∈ F .
– Arc cost ce ≥ 0 and capacity ue > 0 for each e ∈ ES .
– Assignment cost cij ≥ 0 for each (i, j) ∈ AR .
– Customer demand bk > 0 for each k ∈ R.

The goal is to find a subnetwork of G consisting of the set of open facilities F ′, the
set of core edges E′

S and the set of assignment arcs A′
R such that:

(P1) Each customer is assigned to exactly one open facility using arcs from A′
R .

(P2) The sum of customers’ demands assigned to a facility i does not exceed its
capacity vi .

(P3) In the core subnetwork induced by E′
S , we can simultaneously route the flow

from the root node to satisfy the demand of all open facilities, without violating the
edge capacities.

(P4) The sum of assignment, facility opening and edge costs, given by
∑

e∈E′
S
ce +

∑
i∈F ′ fi + ∑

(i,j)∈A′
R

cij , is minimized.

Obviously, by setting capacities ue = ∞, for all e ∈ ES and vi = ∞, for all i ∈ F ,
we obtain the previously studied ConFL problem. Figure 1 illustrates solutions for
ConFL and CapConFL. Squares and triangles denote facilities and customers, re-
spectively. A black fill indicates that a facility is open. A diamond denotes the root
node. Solid edges are in the core network, dotted edges represent the assignments.
In the CapConFL the limited facility capacities require two additional open facili-
ties and a different assignment of customers to facilities. The limited edge capacities
require additional edges in the core network.

Notice that ConFL combines the Steiner tree problem and the uncapacitated fa-
cility location problem. On the other hand, CapConFL combines the single-source
capacitated network design problem with the single-source capacitated facility loca-
tion problem. To see this, consider a feasible CapConFL instance whose core graph
has a star topology. One can easily transform this input graph into an instance of the
single-source capacitated facility location problem: the facility opening costs for each
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i ∈ F are now defined as ce + fi where ce is the corresponding adjacent edge, and
the assignment graph remains unchanged. Similarly, a feasible CapConFL instance in
which the assignment arcs are such that each customer is adjacent to exactly one fa-
cility can be reduced into an instance of the single-source capacitated network design
problem.

1.2 Literature review

Since CapConFL has not been considered before, we provide a detailed literature
overview of three closely related problems: connected facility location, capacitated
network design and single-source capacitated facility location.

1.2.1 Connected Facility Location

Early work on ConFL mainly includes approximation algorithms. ConFL can be ap-
proximated within a constant ratio and the currently best-known approximation ratio
is provided by Eisenbrand et al. [14]. Recently, heuristic approaches have been pro-
posed by Ljubić [28] and Bardossy and Raghavan [3]. Gollowitzer and Ljubić [19]
present and compare several formulations for ConFL, both theoretically and compu-
tationally. Some of these results will be discussed and related to the CapConFL later
on. Arulselvan et al. [2] consider a time-dependent variant of the ConFL and present
a branch-and-cut approach based on cover, cut set cover and degree balance inequali-
ties. Leitner and Raidl [27] propose a branch-and-cut-and-price approach for a variant
of ConFL with capacities on facilities. Cutting planes are used to ensure paths be-
tween the root and open facilities, while column generation is used for selecting open
facilities and assigning customers to them.

1.2.2 (Single-source) Capacitated Network Design Problems (CNDP)

In a typical CNDP setting, a network is given with a limited capacity available on
each edge. A subset of edges of minimum cost needs to be installed in the network
such that commodities with multiple origins and multiple destinations can be routed
through the network without violating installed edge capacities. There exists a large
body of work on the CNDP and related problems.

It includes exact methods based on Lagrangian relaxation or decomposition [10,
15, 16, 21, 26, 34], heuristic methods based on tabu search, neighborhood search,
slope scaling, local branching and Lagrangian relaxation [8, 9, 11, 17, 18, 25, 32].
Recent developments comprise a theoretical study and comparison of Benders, metric
and cut set inequalities [7] and a hybrid method combining mathematical program-
ming and neighbourhood search techniques [20]. Finally, Chouman et al. [5] present
a branch-and-cut approach that compares several families of valid inequalities for the
CNDP.

A generalization of the single-source CNDP is the Local Access Network Design
problem (LAN). In this problem multiple copies of each edge are available. The Lo-
cal Access Network Design problem was studied by Raghavan and Stanojević [31],
Salman et al. [33] and Ljubić et al. [29].
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1.2.3 The Single-Source Capacitated Facility Location Problem (SSCFLP)

Aardal et al. [1] and Deng and Simchi-Levi [12] proposed MIP models and studied
the corresponding polyhedra of the SSCFLP and related problems. Holmberg et al.
[22] present a branch-and-bound method based on a Lagrangean heuristic, Diaz and
Fernández [13] develop a branch-and-price approach based on a decomposition of
the SSCFLP and Contreras and Díaz [6] propose a scatter search heuristic. Ceselli
et al. [4] give an exhaustive computational evaluation of branch-and-cut and branch-
and-price approaches for a general class of facility location problems that includes
the SSCFLP.

1.3 Contribution and outline

In Sect. 2 we introduce a basic integer programming model for CapConFL and dis-
cuss the relation of CapConFL and the Connected Facility Location problem. In par-
ticular, we show that a domination result between two sets of valid inequalities for
ConFL does not hold for CapConFL. In Sect. 3 we derive cover and extended cover
inequalities for the various knapsack type constraints in our model. In addition, we
provide two generalizations of recently proposed cut set cover inequalities and cover
inequalities for single cut sets. Separation procedures for these valid inequalities are
discussed in Sect. 4. In Sect. 5 we illustrate the effectiveness of the proposed model
and the valid inequalities by computational experiments on a set of new, realistic
benchmark instances based on real data. Conclusions are given in Sect. 6.

2 Mixed integer programming models

In this section we introduce a first basic model for the CapConFL. It is based on
models familiar in the context of the SSCFLP and the CNDP. We then strengthen this
model using concepts known from the Connected Facility Location problem [19].

Since all demands of open facilities have to be routed from a single source node,
it can be shown (see, e.g., [29]) that without loss of generality we can replace the
undirected core network GS by a bidirected graph in which each edge e ∈ ES is
replaced by two directed arcs, except for the edges adjacent to the root node, where
it is sufficient to consider outgoing arcs from r . The set of arcs of the bidirected core
network will be denoted by AS . Since the flow routed through an edge will always
be routed in one of the two opposite directions, we define cost and capacities as
cij = ce and uij = ue, respectively, for each e = {i, j} in ES . The union of core and
assignment arcs is denoted by A = AS ∪AR . For a set of customers J ⊂ R we denote
the set of facilities that can serve these customers by F(J ) = ⋃

k∈J F (k), where
F(k) := {i ∈ F : (i, k) ∈ AR}. Likewise, for I ⊂ F we denote by R(I) = ⋃

i∈I R(i)

where R(i) := {k ∈ R : (i, k) ∈ AR}. For W ⊂ V we denote the set of ingoing arcs by
δ−(W).
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2.1 The basic MIP model

In our models we will use the following binary decision variables:

xij =
{

1, if arc (i, j) is installed

0, else
∀(i, j) ∈ A

zi =
{

1, if facility i is installed

0, else
∀i ∈ F

In addition, continuous flow variables gij indicate the total amount of flow between
the root r and all open facilities in F routed through arc (i, j) ∈ A.

The following model combines the single-commodity flow (SCF) formulation for
the CNDP (see, e.g., [31, 33]) with a formulation for the SSCFLP (see, e.g., [22]):

(SCF) min
∑

ij∈A

cij xij +
∑

i∈F

fizi

s.t.
∑

ji∈AS

gji −
∑

ij∈AS

gij =
⎧
⎨

⎩

dlzl

−∑
l∈F dlzl

0

i = l

i = r

else
∀i ∈ VS (1a)

0 ≤ gij ≤ uij xij ∀(i, j) ∈ AS (1b)
∑

k∈R(i)

bkxik ≤ vizi ∀i ∈ F (1c)

xik ≤ zi ∀i ∈ F,∀k ∈ R(i) (1d)
∑

i∈F(k)

xik = 1 ∀k ∈ R (1e)

xij ∈ {0,1} ∀(i, j) ∈ A (1f)

zi ∈ {0,1} ∀i ∈ F (1g)

Constraints (1c)–(1e) are the strong relaxation of the SSCFLP. The assignment con-
straints (1e) model property (P1) and constraints (1c)–(1d) ensure property (P2). In
constraints (1a)–(1b) we use the single-commodity flow variables to ensure property
(P3). This model is intuitive, but it provides weak lower bounds, due to the following
facts: (1) big-M constraints (1b) are used to model the arc capacities, and (2) the con-
nectivity between the root and the open facilities, rather than between the root and
the customers, is required. The model is impractical to solve in a branch-and-bound
framework, even for medium sized instances (see, e.g., [30]).

By using the following capacitated cut set inequalities to replace constraints
(1a) and (1b), we can project out the flow variables from the previous model (see,
e.g., [29]):

∑

ij∈δ−(W)

uij xij ≥
∑

l∈F∩W

dlzl ∀W ⊆ VS \ {r} (CutSCF )
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The obtained model contains an exponential number of inequalities and provides the
same lower bounds as the corresponding flow model. However, inequalities (CutSCF )
can be strengthened as follows:

∑

ij∈δ−(W)

min

(

uij ,
∑

l∈F∩W

dl

)

xij ≥
∑

l∈F∩W

dlzl ∀W ⊆ VS \ {r}

2.2 Relations to Connected Facility Location and cut set inequalities

Gollowitzer and Ljubić [19] studied MIP formulations for ConFL and provided
a complete hierarchy of several MIP formulations with respect to the quality of
their LP-bounds. Among others, two cut set-based formulations for ConFL were de-
scribed. The models differ in the way they require connectivity.

In the first model, connectivity is ensured between the root and any open facility
as follows:

∑

ij∈δ−(W)

xij ≥ zl ∀W ⊆ VS \ {r}, ∀l ∈ W ∩ F (CutZ)

These inequalities state that for each open facility the edges on at least one path be-
tween the root node and the respective facility need to be installed. Additional assign-
ment constraints (1d) and (1e) are required between the facilities and the customers.

The second model replaces constraints (CutZ) by the following cut set inequalities
that ensure connectivity between the root and every customer:

∑

ij∈δ−(W)

xij ≥ 1 ∀W ⊆ V \ {r},W ∩ R �= ∅ (CutX)

For ConFL it was shown that the second model provides theoretically stronger lower
bounds, but is computationally outperformed by the first model on the set of bench-
mark instances considered there.

Both sets of inequalities, (CutZ) and (CutX) are also valid for CapConFL. It is
interesting to mention that, unlike for ConFL, for which inequalities (CutZ) are im-
plied by the model with (CutX) constraints, the two families of inequalities can be
used complementary to each other for CapConFL:

Lemma 1 Inequalities (CutZ) and (CutX) both strengthen the LP-relaxation of the
basic model (SCF). However, the MIP models (SCF) + (CutX) and (SCF) + (CutZ)
are incomparable w.r.t. the quality of their LP-bounds.

Proof It is not difficult to see that inequalities (CutZ) and (CutX) both strengthen
the LP-relaxation of (SCF). To see that (CutZ) inequalities are not implied by
(SCF) + (CutX), consider the example shown in Fig. 2. A vector (x, z) that satis-
fies (CutSCF ) is x12 = 0.75, x23 = x24 = 0.25, z3 = z4 = 0.75, x35 = x46 = 0.75 and
x45 = x36 = 0.25. This solution is cut off by the (CutX) constraints x23 + x24 ≥ 1 and
x12 ≥ 1. Finally, inequalities (CutZ) are not redundant for (SCF) + (CutX) since they
ensure x23 + x24 ≥ 1.5 which further strengthens the model.
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Fig. 2 Example for comparison
of cut set inequalities

Conversely, the model (SCF) + (CutZ) does not imply (CutX) constraints, which
follows from the previous results for ConFL in [19], i.e., a CapConFL instance with
sufficiently large capacities on arcs and facilities will have the desired property. �

3 Valid inequalities

For the well-known subproblems of CapConFL, SSCFLP and CNDP, several sets of
strengthening valid inequalities are known. We will review ideas that seem relevant
in the context of the CapConFL and propose several sets of new valid inequalities
based on the combination of the facility location and network design aspect.

3.1 Cover inequalities for single facilities

Deng and Simchi-Levi [12] proposed cover inequalities for the SSCFLP with uniform
capacities. These inequalities are better known in the context of general mixed integer
programming to strengthen knapsack-type constraints. We will use the concept of
extended cover inequalities (see, e.g., the recent work of Kaparis and Letchford [24]).

Consider an arbitrary potential facility node i ∈ F . We call a set R′ ⊆ R(i) a
cover for i ∈ F if

∑
k∈R′ bk > vi and minimal if

∑
k∈R′ bk − b� ≤ vi for all � ∈ R′.

For a minimal cover R′, we define E(R′) = {k ∈ R(i) \ R′ : bk ≥ b∗}, where b∗ =
maxk∈R′ bk .

Let the set of all minimal covers of i ∈ F be denoted by MC(i). Then the following
extended knapsack cover inequalities are valid for the CapConFL:

∑

j∈R′∪E(R′)
xij ≤ (∣

∣R′∣∣ − 1
)
zi ∀R′ ∈ MC(i),∀i ∈ F (EKS)

3.2 Inequalities involving multiple facilities

We derive two new families of inequalities that are implied by the limited capacities
of facilities and the limited number of assignments edges in AR .

3.2.1 Minimum cardinality inequalities on facilities

For a given set of customers J ⊂ R and the corresponding subset of facilities F(J ),
let p(J ) be the minimum number of facilities in F(J ) that is required to assign the
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customers in J in a feasible way, i.e., by respecting the allowed possible assignments
and satisfying the capacity constraints on the facilities in F(J ). In other words, p(J )

is the optimum solution of a capacitated bin-packing problem with the set of bins
F(J ), capacities vi for i ∈ F(J ), the set of items J , demands bj for j ∈ J and such
that each item j ∈ J is only allowed to be assigned to bins in F(j). W.l.o.g. we
can assume that bk ≤ vi for all (i, k) ∈ AR and thus p({k}) = 1 for all k ∈ R and
p(J ) ≤ min{|F(J )|, |J |} for all J ⊆ R.

Then the following minimum cardinality inequalities are valid for the CapConFL:

∑

i∈F(J )

zi ≥ p(J ) ∀J ⊆ R (MCF )

3.2.2 (Extended) cover inequalities on facilities

Next we apply the idea of cover inequalities to the relation of facility capacities
and customer demands. Let again be J ⊆ R. We call a set F ′ ⊂ F(J ) a capac-
ity cover with respect to J if

∑
i∈F(J )\F ′ vi < b(J ) and we call it minimal if

vk + ∑
i∈F(J )\F ′ vi ≥ b(J ) for all k ∈ F ′. Let CC(F (J )) denote the set of all such

capacity covers of F(J ). We call the following set of constraints cover inequalities
on facilities:

∑

i∈F ′
zi ≥ 1 ∀F ′ ∈ CC

(
F(J )

)
,∀J ⊆ R (2)

Similar to the cover inequalities for single facilities we can extend the covers and
obtain stronger inequalities. Let v∗ = maxi∈F ′ vi and let E(F ′) = {i ∈ F(J ) \ F ′ :
vi ≥ v∗} be the set of remaining facilities from F(J ) with a capacity of at least v∗.
We refer to the following inequalities as extended cover inequalities on facilities:

∑

i∈F ′∪E(F ′)
zi ≥ 1 + ∣

∣E
(
F ′)∣∣ ∀F ′ ∈ CC

(
F(J )

)
,∀J ⊆ R (CovF )

To see that these inequalities are valid we can rewrite inequalities (2) as
∑

i∈F ′(1 −
zi) ≤ |F ′| − 1. The corresponding extended cover inequality is then

∑

i∈F ′∪E(F ′)
(1 − zi) ≤ ∣

∣F ′∣∣ − 1.

Rewriting this inequality gives (CovF ).
The sets of inequalities (MCF ) and (CovF ) do not contain each other as the fol-

lowing counterexamples show. In the example in Fig. 3(a) a valid (CovF ) inequality
is z1 +z2 ≥ 2, while the (MCF ) inequalities only ensure z1 +z2 +z3 ≥ 2. On the con-
trary, for the example given in Fig. 3(b) the (CovF ) inequalities are z1 + z2 ≥ 1 and
z1 + z3 ≥ 1, but they are strictly dominated by the (MCF ) inequality z1 + z2 + z3 ≥ 2
that also implies z2 + z3 ≥ 1.
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Fig. 3 Counterexamples for comparison of (MCF ) and (CovF )

3.2.3 General representation of cover inequalities on facilities

Consider now a general valid inequality of type
∑

i∈F̂

zi ≥ p (3)

defined for a set F̂ ⊆ F and p ≥ 1. For p = 1 we have the simple cover inequali-
ties (2) (i.e., F̂ ∈ CC(F (J ))) and, for p ≥ 2, inequalities of type (MCF ) and (CovF )
belong to this family, i.e., we have F̂ ∈ F(J ) ∪ {F ′ ∪ E(F ′) | F ′ ∈ CC(F (J ))}, for
J ⊆ R. The following family of general cover inequalities on facilities is then also
valid for our problem:

∑

i∈F̃

zi ≥ 1 ∀F̃ ⊆ F, |F̃ ∩ F̂ | ≥ |F̂ | − p + 1 (Covgen)

It is not difficult to see that the latter inequalities are implied by (3). However, they
are of particular interest when combined with cut set inequalities, as explained below.

3.3 Cut set cover inequalities

This new family of valid inequalities combines cut set inequalities with the general
cover inequalities for facilities of the form (Covgen). Inequalities (Covgen) state that
at least one facility in F̃ needs to be opened in a feasible solution. Consequently, for
every subset of nodes W ⊂ V containing all nodes in F̃ , at least one ingoing arc needs
to be installed. Let F denote the family of all subsets of facilities for which (Covgen)
is valid:

F =
⋃

J⊆R

F(J ) ∪ {
F ′ ∪ E

(
F ′) | F ′ ∈ CC

(
F(J )

)}

and let

p(F̂ ) =
{

1 + |E(F ′)|, F̂ = F ′ ∪ E(F ′), F ′ ∈ CC(F(J ))

p(J ), F̂ = F(J )
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Fig. 4 Example for cut set
cover inequalities (CutCov)
derived from an
inequality (CovF )

Fig. 5 Example for cut set
cover inequalities (CutCov)
derived from an
inequality (MCF )

for all F̂ ∈ F . The following cut set cover inequalities are valid for CapConFL and
not implied by any of the previously described sets of constraints:

∑

ij∈δ−(W)

xij ≥ 1 ∀F̃ ⊆ W ∩F, |F̃ ∩ F̂ |≥|F̂ | − p(F̂ ) + 1, F̂ ∈ F (CutCov)

Inequalities (CutCov) are a generalization of the previously introduced cut set
cover inequalities for the incremental ConFL studied in Arulselvan et al. [2]. Fig-
ure 4 illustrates inequalities (CutCov) for two different subsets W and a cover in-
equality z1 + z2 ≥ 1 of type (CovF ). Figure 5 illustrates inequalities (CutCov) for the
minimum cardinality inequality z1 + z2 + z3 ≥ 2.

3.4 Cover inequalities for single cut sets

The following set of valid inequalities generalizes the cover inequalities known for
the capacitated network design problem studied in Chouman et al. [5]. Consider
a (CutSCF ) cut set inequality

∑
ij∈δ−(W) uij xij ≥ ∑

l∈F∩W dlzl defined by a cut set
δ−(W) for W ⊆ V \ {r}. Let F ′ ⊆ F ∩ W and d(F ′) = ∑

l∈F ′ dl . A set C ⊂ δ−(W)

is called a cover with respect to δ−(W) and F ′, if
∑

ij∈δ−(W)\C uij < d(F ′) and a
minimal cover if, in addition,

∑

ij∈δ−(W)\C
uij + ulk ≥ d

(
F ′) ∀(l, k) ∈ C.

Let MC(W,F ′) denote the set of all minimal covers with respect to δ−(W) and F ′.
Then the following cover inequalities on single cut sets are valid for the CapConFL:

∑

ij∈C

xij ≥ 1 +
∑

l∈F ′
(zl − 1) ∀C ∈ MC

(
W,F ′). (Covδ−(W))
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Fig. 6 Illustration of cut set
cover inequalities

Figure 6 illustrates inequalities (Covδ−(W)). Edge (b, d) is a cover with respect to
W = {1,2,3, d, e, f } and F ′ = {2,3}.

4 Separation procedures

In this section we describe the separation procedures used in our branch-and-cut al-
gorithm. We refer to the variable values of the current fractional solution by (x̄, z̄).

4.1 Separation of inequalities (CutSCF ) and (CutZ)

Inequalities (CutSCF ) can be separated in polynomial time (see also Ljubić et al.
[29]). We define the support graph G′ = (V ′,A′) where V ′ := VS ∪ t with an addi-
tional sink node t , A′ := AS ∪ At and At := {(i, t) | i ∈ F, z̄i > 0}. We define capaci-
ties on arcs as uij x̄ij for each arc ij ∈ AS and di z̄i for each arc it ∈ At . We calculate
the minimum cut between r and t in G′. Let δ−(W) denote the arcs of this cut. If
δ−(W) ∩ AS �= ∅ and

∑
ij∈δ−(W)∩AS

uij x̄ij <
∑

i∈W∩F di z̄i we have detected a vio-
lated inequality (CutSCF ).

Inequalities (CutZ) can be separated in similar fashion (see also Gollowitzer and
Ljubić [19]). The support graph in this case is the bidirected core network (VS,AS)

with arc capacities set to x̄ij for each arc ij ∈ AS. A minimum cut in AS between r

and l ∈ F with a weight of less than z̄l corresponds to a violated inequality (CutZ).

4.2 Separation of inequalities (CutX)

For the separation of (CutX) inequalities we define a support graph Gj for each j ∈ R.
Thereby, Gj = (V ∪ {j},AS ∪ Aj) where Aj = {(i, j) | i ∈ F(j)}. Capacities on the
arcs from AS ∪ Aj are set to x̄ij . Each minimum cut in Gj between r and j ∈ R

whose weight is less than 1 corresponds to a violated inequality (CutX).
If the number of customers is large, complete separation of inequalities (CutX)

is very time-consuming. We therefore reduce the set of customers considered in
the separation to a subset that still ensures that all violated inequalities are identi-
fied. A customer c1 ∈ C is ignored if there exists another customer c2 ∈ C such that
F(c2) ⊂ F(c1). If sets F(ci) are identical for all ci ∈ C̄ ⊆ C only one customer in C̄

is considered.
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4.3 Separation of inequalities (EKS)

For a fractional point (x̄, z̄) and for each i ∈ F̄ = {i ∈ F | z̄i > 0}, the separation of
(simple, non-extended) inequalities (EKS) is equivalent to solving a knapsack prob-
lem which is described by the following integer program:

min α =
∑

j∈R

(z̄i − x̄ij )sj

s.t.
∑

j∈R

bj sj > vi

sj ∈ {0,1} ∀j ∈ R

If α < z̄i a simple, non-extended cover inequality is violated.
Instead of solving the separation problem exactly (e.g., using a dynamic program-

ming procedure), we use a heuristic separation proposed by Kaparis and Letchford
[24] that was shown to be effective in directly detecting extended knapsack cover in-
equalities. Adapted to our (EKS) inequalities, this procedure consists of the following
steps, executed for each i ∈ F :

1. Sort the items in R(i) in non-decreasing order of (z̄i − x̄ij )/bj , and store them in
a list L. Initialize the cover R′ as the empty set and initialize b∗ = vi .

2. Remove an item from the head of the sorted list L. If its weight is larger than b∗,
ignore it, otherwise insert it into R′. If R′ is now a cover, go to step 4.

3. If L is empty, stop. Otherwise, return to step 2.
4. If the extended cover inequality corresponding to R′ is violated by (x̄, z̄), output

it.
5. Let k∗ = arg maxj∈R′ bj be the customer in R′ with the highest demand. Set b∗ =

bk∗ and delete k∗ from R′. Return to step 2.

In fact, we perform two variants of this algorithm. The one stated above and one
where the items in R(i) are sorted in non-increasing order of x̄ij .

4.4 Separation of inequalities (MCF ) and (CovF )

We consider subsets of facilities F ′ ∈ FC := F1 ∪F2, where F1 := {F(k) | k ∈ R} and
F2 := {F(k1) ∪ F(k2) | |F(k1) ∩ F(k2)|/min(|F(k1)|, |F(k2)|) ≥ 0.5, k1, k2 ∈ R},
i.e., F2 contains unions of F(k1) and F(k2) such that at least half the facilities of
either F(k1) or F(k2) are common to both these sets. For each F ′ we define the subset
of customers to be considered in the separation of (MCF ) and (CovF ) inequalities as
J (F ′) := {k′ ∈ R | F(k′) ⊆ F ′}.
4.4.1 Separation of inequalities (MCF )

We calculate p(J ) for J and F(J ) by solving the following bin-packing problem
with assignment restrictions and non-uniform bin capacities:

p(J ) = min
∑

i∈F(J )

ti
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s.t.
∑

k∈R(i)

bksik ≤ viti ∀i ∈ F(J )

sik ≤ ti ∀k ∈ J,∀i ∈ F(k)
∑

i∈F(k)

sik = 1 ∀k ∈ J

sik ∈ {0,1} ∀k ∈ J,∀i ∈ F(k)

ti ∈ {0,1} ∀i ∈ F(J )

We consider F ′ ∈ FC as candidate sets for F(J ) and determine J = J (F ′) as de-
scribed in the previous paragraph. The values of p(J ) are calculated for all such J by
means of a general purpose solver during preprocessing. In the separation procedure
we repeatedly check whether the current fractional solution violates any of the stored
inequalities (MCF ). By doing so we consider at most |FC | ≤ |R| + |R|2 inequalities
of type (MCF ).

4.4.2 Separation of inequalities (CovF )

Given J ⊆ R and F(J ), the separation of (simple, non-extended) covers on facili-
ties (2) is equivalent to solving the following knapsack problem:

min α =
∑

i∈F(J )

z̄isi

s.t.
∑

i∈F(J )

visi >
∑

i∈F(J )

vi − b(J )

si ∈ {0,1} ∀i ∈ F(J )

If α < 1, an inequality (2) is violated.
We consider F(J ) for J = J (F ′) and F ′ ∈ FC . To find covers in CC(F (J )) we

use the separation procedure described in Sect. 4.3 with the following modifications:
The facilities in F(J ) are ordered according to z̄i/vi in non-decreasing fashion and
b∗ is initialized with the maximum capacity of the facilities in F(J ).

4.5 Separation of inequalities (CutCov)

In the separation of (CutCov) we consider all inequalities of the form (3) that were
found by the separation procedure for (CovF ) and (MCF ). For the corresponding set
of facilities F̂ and right-hand side p we randomly generate up to p sets F̄ ⊆ F̂ such
that |F̄ | = |F̂ | − p + 1. We separate inequalities (CutCov) by running a maximum
flow algorithm on graph G′ defined as in Sect. 4.1, but with capacities of 1 on arcs
(i, t) if i ∈ F̄ and 0 if i �∈ F̄ .

4.6 Separation of inequalities (Covδ−(W))

Given a cut set W ⊆ V \ {r} and the set of facilities contained in that cut set, F ′ =
W ∩F , a violated cut set cover inequality is detected by solving the following integer
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program:

min α =
∑

ij∈δ(W)

x̄ij sij +
∑

l∈F ′
(1 − z̄l )tl

s.t.
∑

ij∈δ−(W)

uij sij +
∑

l∈F ′
dltl >

∑

ij∈δ−(W)

uij

sij ∈ {0,1} ∀(i, j) ∈ δ−(W)

tl ∈ {0,1} ∀l ∈ F ′

A (Covδ−(W)) inequality is violated if α < 1.
We separate inequalities (Covδ−(W)) as follows: All cut sets W that are obtained

during the separation of inequalities (CutSCF ) are kept in a pool. We choose F ′ =
{l ∈ F ∩W | z̄l > 0.1}. Then we use the following heuristic procedure to find minimal
covers C ∈ MC(W,F ′′), where F ′′ ⊆ F ′:
1. Sort the items in δ−(W) and F ′ in non-decreasing order of (1− z̄i )/di and x̄ij /uij

and store them in a list L. Initialize the cover C and F ′′ as empty sets and initialize
u∗ = ∑

ij∈δ−(W) uij .
2. Remove an item from the head of the sorted list L.

(a) If it is an arc and its capacity is larger than u∗, ignore it, otherwise insert it
into C.

(b) If it is a facility insert it into F ′′.
If C is now a cover with respect to δ−(W) and F ′′, go to step 4.

3. If L is empty, stop. Otherwise, return to step 2.
4. If the cover inequality corresponding to C ∈ MC(W,F ′′) is violated by (x̄, z̄),

output it.
5. Let (i∗, j∗) = arg maxij∈C uij be the arc in C with the highest capacity. Set u∗ =

ui∗j∗ and delete (i∗, j∗) from C. Return to step 2.

5 Computational results

In this section we report the results of our computational experiments. They were per-
formed on a desktop machine with an 8-core Intel Core i7 CPU at 2.80 GHz and 8 GB
RAM. Each run was performed on a single core. We used the CPLEX [23] branch-
and-cut framework, version 12.2. All cutting plane generation procedures provided
by CPLEX are turned off unless stated explicitly. All heuristics provided by CPLEX
are turned off. The other parameters are set to their default values.

5.1 Branch-and-cut framework

The settings described in this section are the result of our preliminary testing.
To reduce the number of constraints that need to be identified by our separation

routines we add degree balance constraints and subtour elimination constraints for
cycles of size two to our model:

xji ≤ x
(
δ+(i)

) + zi ∀(j, i) ∈ AS, i ∈ F (4a)
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xji ≤ x
(
δ+(i)

) ∀(j, i) ∈ AS, i ∈ VS \ (
F ∪ {r}) (4b)

zi ≤ x
(
δ−(i)

) ∀i ∈ F (4c)

xij ≤ x
(
δ−(i)

) ∀(i, j) ∈ AS, i ∈ VS \ {r} (4d)

xij + xji ≤ 1 ∀(i, j) ∈ AS, i < j, i, j �= r (4e)

In order to reduce the size of the linear programs solved throughout the process
we relax constraints (1d) and add them only if they are violated. Separation proce-
dures are called in the following order: (EKS)–(CovF )–(MCF )–(1d)–(Covδ−(W))–
(CutCov)–(CutZ)–(CutX)–(CutSCF ). To prevent a tailing off effect of the separation
procedures we stop separating valid inequalities if the lower bound has improved by
less than 0.05 % for the last 10 calls of the separation procedures. We apply this rule
at each node of the branch-and-bound tree.

Inequalities (CovF ), (MCF ), (Covδ−(W)), (CutCov) and (CutSCF ) are only sepa-
rated at the root node of the branch-and-bound tree. Inequalities (EKS) and (1d) are
separated at every node, separation of (CutX) is done at every 10th node and separa-
tion of (CutZ) is done at every 100th node.

To improve the computational efficiency of the separation procedures for cut set
inequalities, we search for nested minimum cardinality cuts. To do so, all capacities
in the respective separation graph are increased by some ε > 0. Thus, every detected
violated cut contains the least possible number of arcs. We resolve the linear program
after adding at most 30 violated inequalities of any class. Finally, we randomly choose
the target nodes to search for violated cuts.

5.2 Instances

We generated a set of realistic benchmark instances derived from real world data,
which were provided by an Austrian telecommunications provider. The key figures
for the instances we use are listed in Table 1.

The real world data contain most of the information needed for complete Cap-
ConFL instances: The sets of facilities, Steiner nodes and edges of the core network;
a set of customers with associated demands; a set of assignment arcs connecting cus-
tomers and facilities, including their distance and an estimate of the bandwidth pro-
vided by the respective assignment arc; lengths of core edges and assignment arcs.
These inputs define five graphs with different topologies that will be denoted by A, B,
C, D and E. To complete the instances with respect to the input required by CapConFL
we applied the following steps:

– For each instance a minimum customer bandwidth is selected, assignment arcs that
provide less than this bandwidth are removed. We chose 20, 25 and 30 MBit/s and
denote this by 20, 25 and 30 in the instance label.

– At most 20 assignment arcs per customer are considered.
– Customers without assignment arcs are removed and facilities without assignment

arcs are replaced by Steiner nodes.
– Steiner nodes with a degree of two and their adjacent edges are replaced by a single

edge.
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– A technology for each facility is randomly selected. For FTTB instances we con-
sider the following combinations of capacity, demand and cost: (32,4,4000),
(64,5,6000), (128,7,8000). For FTTC instances we choose between (64,4,

13000), (128,4,16000) and (192,4,20000).
– Edge capacities are uniformly randomly selected from [0.7μ,1.3μ], where μ is

equal to the demand of the smallest set of facilities needed to feasibly assign the
customers, given the facility capacities chosen before [10].

5.3 Comparison against basic model and general purpose solver

In the first part of our computational study we assess the influence of the cutting
plane generation procedures built into CPLEX compared to the influence of the valid
inequalities proposed in this work. To this end we ran our model with the following
different settings: Basic is the cut set based model corresponding to SCF, i.e., the
model consisting of constraints (1c)–(1g), (CutSCF ) and (4a)–(4e). Basic + CPX is
the basic model with all CPLEX cuts turned on. All VI is the basic model with all
valid inequalities from Sect. 3 added. All VI + CPX is the basic model with all valid
inequalities and CPLEX cuts turned on.

In Table 1 we compare the LP gaps (gLP) and time to solve the LP relaxation (tLP)
for these four models. We calculated the gaps as (UB − LB)/UB, where UB is the
best known integer solution found in all our tests and LB is the solution value of the
LP relaxation of the respective model (after dynamic addition of cuts). In the last two
lines we show the mean and median of the values in the respective column. The best
LP gap of the four models is shown in bold.

From the results in Table 1 we conclude that the model without valid inequalities
provides a weak LP bound with an LP gap of 14.28 % on average over the considered
instance set. The cutting planes provided by CPLEX can reduce the LP gaps of the
basic model by almost one half to an average of 7.23 %. This average gap is still sub-
stantial compared to 1.31 % obtained by the model that is strengthened by the valid
inequalities proposed in this paper. Using CPLEX cuts in addition only improves the
average gap to 1.13 %.

5.4 Influence of different sets of valid inequalities

In the second part of our computational study we assess the influence of the different
sets of valid inequalities proposed in this work. We compare five different settings that
differ by the sets of valid inequalities considered. For each setting we add a subset
of valid inequalities to the basic model described above. Settings (CutZ), (CutX) and
(CutZ) + (CutX) are self-explaining. Setting All VI is defined as above and setting
Most VI uses inequalities (CutZ), (CutX), (EKS), (CovF ) and (MCF ).

For each of these settings, Table 2 shows the gap of the linear programming relax-
ation, gLP, after the dynamic addition of cuts and calculated as in Table 1, the time
needed to solve linear programming relaxation, tLP, and the number of cutting planes
added, Cuts. In the last two lines we show the mean and median of the values in the
respective column. The best LP gap of all models is shown in bold.

We would like to point out several interesting aspects. The LP gaps of setting
(CutZ) are substantially larger than the ones of all other settings. Surprisingly the
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same does not hold for setting (CutX), which on average gives even stronger LP
bounds than setting (CutZ) + (CutX). We trace the difference between the gaps of
(CutX) and (CutZ) + (CutX) to the criteria we used to prevent a tailing off effect
during separation. A comparison of the running times shows that separating valid
inequalities with a different structure improves the overall running time of the LP
relaxation. Approaches (CutZ) and (CutX) need 110 and 90 seconds on average, re-
spectively, whereas approach (CutZ) + (CutX) only takes 46 seconds to compute ap-
proximately the same lower bounds as (CutX). The separation routines in approaches
Most VI and All VI require an additional 10 and 12 seconds on average. Thereby, the
average LP gaps are improved from 1.44 % ((CutZ) + (CutX)) to 1.31 % (Most VI
and All VI). However, All VI does not improve upon Most VI significantly.

There is a notable difference in the numbers of valid inequalities that were de-
tected during the LP relaxations of the different settings. By far the highest number
of inequalities is found by setting (CutZ), even though the obtained LP bound is com-
parably weak. This is consistent with the long running time of the LP relaxation of
setting (CutZ). Rather surprising is the fact, that setting All VI obtains the same LP
bound as setting Most VI for 28 out of 30 settings but the number of valid inequalities
found by All VI is smaller for 22 and larger for only 2 instances.

Table 3 shows the respective gap of the five different settings after 3, 10, 30 and
60 minutes. For these results we calculate the gaps as (UBt −LBt )/UBt where UBt is
the best integer solution found by the respective setting after t minutes and LBt is the
lower bound after t minutes. For each instance and running time the smallest gap of
all five settings is indicated in bold. If no integer solution is available after t minutes
we indicate this by a dash in the respective column. For each setting and time t the
last three lines of the table indicate the mean and median of gaps over the instance
set and how often the respective approach gives the smallest gap of all settings.

Contrary to what the LP gaps in Table 2 suggest the setting All VI with all valid
inequalities enabled outperforms the other settings on a majority of instances. The
performance of setting Most VI is only slightly worse (0.09 %, 0.07 % and 0.05 %
larger gap after 10, 30 and 60 minutes). The other settings perform significantly worse
with between 0.46 % and 2.58 % larger gaps on average.

In Figs. 7 and 8 we give a graphical illustration of the numbers reported in Table 3.
The coordinates of each mark indicate how many out of 30 instances (ordinate axis)
were solved within a given optimality gap (abscissa). Figure 7 shows the performance
after 3 and 10 minutes and Fig. 8 shows the performance after 30 and 60 minutes.

6 Conclusions and future research

In this paper we introduced the Capacitated Connected Facility Location problem.
We described various sets of cut set, minimum cardinality, cover and cut set cover
inequalities to strengthen a basic integer programming model. After a detailed dis-
cussion of separation procedures we reported the results of our computational exper-
iments. These confirmed that the proposed approach finds solutions within a small
optimality gap averaging to less than 2 % for a set of realistic new benchmark in-
stances.
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Fig. 7 Performance chart for 3 minutes (top) and 10 minutes (bottom) runtime

The goal of this work was to contribute to a better understanding of the computa-
tional challenges in solving realistic telecommunication network optimization prob-
lems. CapConFL models some more realistic requirements that have been ignored by
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Fig. 8 Performance chart for 30 minutes (top) and 60 minutes (bottom) runtime

the previous models in the OR literature. However, there are further interesting exten-
sions of CapConFL that need to be studied and that are of great relevance for practical
applications. For example, CapConFL simplifies the cost structures in the core net-
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work. In a real world setting, cables with different cost and capacities are available
and need to be placed in ducts with sometimes limited capacities. These ducts can be
available beforehand, or need to be dug at a much higher cost. Consequently, more
complex cost structures could be considered at the core network. If network surviv-
ability is an issue, then higher connectivity requirements could be imposed to the core
network, or to a subset of its (more important) nodes. These are some of the relevant
topics that we believe are of interest for further studies on extensions of CapConFL.

Acknowledgements The authors thank the two anonymous referees for their valuable comments and
suggestions to improve the paper.

Stefan Gollowitzer was supported by the Fonds de recherche du Québec—Nature et technologies under
grant 163879 within the Programme de Stages Internationaux. Ivana Ljubić was supported by an APART
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